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Abstract—Traditionally a motion planner outputs a trajectory,
which is then tracked by a controller, but tracking the trajec-
tory becomes non-trivial under actuation uncertainty and the
possibility of contact. In order to design a planner that can
take a controller into account, we need to estimate the success
rate of the controller completing a trajectory produced by the
planner. Instead of using simulation to estimate the success rate,
which is too expensive, we propose a contact-point-based feature
extraction method that can be used to learn the controller success
rate for an SE(2) robot in contact-rich environments. Our results
suggest that our method can predict the success rate in cluttered
environments much better than random predictions. Moreover,
the computation time is much less than using simulation to
estimate the success rate.

I. INTRODUCTION

Real world robot performance is limited by the uncertainties
of the sensors, robot actuators, and environment dynamics. The
problem is especially acute for manipulation tasks in which the
robot is moving in a contact-rich environment. Seminal work
dating back to the 1980s Lozano-Perez et al. [7] proposed the
idea of using contact to mitigate robot actuation uncertainty.
However, it planning for motion in contact and accounting for
actuation uncertainty is still a difficult problem.

We would like to create a motion planner that can plan
contact motions in order to reduce the actuation uncertainties
and increase the success rate of achieving assembly tasks. In
order to create such motion planner, we need to estimate the
success rate of the controller on each edge the planner con-
siders. However, running simulations to estimate the success
rate is computational expensive. As this estimation is required
for every edge considered by the planner, we need a faster
way to estimate the controller success rate. Thus in this work
we focus on quickly estimating the success rate of moving a
robot between two waypoints when obstacles are nearby.

We use machine learning to learn the controller success rate
in contact-rich environments in order to avoid simulation in the
planner loop. In this preliminary work, we focus on an SE(2)
robot example. We propose an approach to extract potential
contact-point-based features from the environment to generate
useful features that can capture both workspace and C-space
information. Our results suggest that the our proposed method
can predict the success rate of the controller much better than
random predictions and is much faster than using simulation
to estimate the success rate.
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II. RELATED WORK

Motion planning under actuation uncertainty has been stud-
ied for many years. Lozano-Perez et al. [7] introduced pre-
image backchaining which can generate motions guaranteed
to succeed under actuation uncertainty. However, computing
the pre-image is computationally expensive[2, 3].

Partially-Observable Markov Decision Processes
(POMDPs) have been used widely to formulate motion
planning in belief-space[5, 4]. Some sampling-based planners
have been proposed in [10, 1]. These planners require an
estimate of the transition model between two states. Our
work tries to learn the success rate of the controller which
can serve as the transition model in POMDP problems.

Levine et al. [6] used guided policy search to learn a
controller for robot manipulation tasks in contact-rich environ-
ments. However, our work focuses on learning the success rate
of the controller moving between arbitrary waypoints instead
of learning a specific controller for specific tasks. Our work
is highly motivated by [9] and [8]. Melchior and Simmons
[8] proposed a particle RRT where the extension to the search
tree is treated as a stochastic process and use simulation to
estimate the probability of moving from one state to another.
Phillips-Grafflin and Berenson [9] used a kinematic simulator
to estimate the transition probability between two states and
used information gathered in execution to update the model.
Since online kinematic simulation is time-consuming, we seek
to replace it with a learned model to predict the success rate
of the controller to transit from one state to the other.

III. PROBLEM STATEMENT

We focus on the problem of motion planning under uncer-
tainty, specifically, we are interested in the problem of manip-
ulating objects in contact-rich environments. We consider the
object that we try to manipulate as a robot. The uncertainty we
consider is the robot actuation uncertainty, where for each joint
(i.e. each DOF of SE(2)), the control command is u and the
executed command is û = u+max(ω1, ω2|u|)v. v is a random
number generated from a truncated normal distribution. ω1 is
the minimum uncertainty parameter. ω2 is the proportional
uncertainty parameter. When the absolute value of the control
command is larger than ω1/ω2, the uncertainty is proportional
to the absolute value of the control command. If the absolute
value of the control command is smaller than the threshold,
the uncertainty magnitude is ω1.

During the execution, the robot may become stuck. To
be stuck means that given a finite time horizon, the robot



Fig. 1. Examples of C-space kinematic constraint. Green: unstuck point. Red:
stuck point. Blue arrow −→n : surface normal. Yellow arrow −→er : normalized pose
error. Magenta arrow

−−→
proj: normalized pose error projected onto the surface.

pose doesn’t change significantly, however, the robot hasn’t
reached the goal. Both friction and kinematic constraints (e.g.
an obstacle) may cause the robot to be stuck. For friction,
when the robot contacts obstacles, if the force at the contact
is within the friction cone the robot will be stuck. However,
if the force is outside the friction cone the robot will either
slide along the surface or break contact. To execute motion in
contact we use the contact motion controller from [9], which
is a PD velocity controller that adapts parameters to overcome
the effect of static friction.

Kinematic constraints can also cause the robot to be stuck
when the current robot pose, environment, and goal have a
certain relationship. Fig 1 illustrates the kinematic constraints
that cause the robot to be stuck in C-space. The light blue
region represents a C-space obstacle. Let −→n represent the C-
space surface normal, −→nP is the surface normal at point P . −→er
represents the normalized pose error vector to the goal

−−→
PG,

where G represents the target pose. There are two different
kinds of stuck point condition. Fig 1(a) shows the case that
the surface normal −→n is well-defined at point P . In this case,
if 〈−→n ,−→er 〉 = −1, then the point P is a stuck point as shown
in Fig 1(a). The second stuck condition is shown in Fig 1(b)
where the point P lies on the intersection of two manifolds. In
this case, we will check all the surface normal {−→n1,−→n2, ...−→nn}
at this point P on each manifold. If −−→er is in the positive
linear span of {−→n1,−→n2, ...−→nn}, then the point is a stuck point.
For example, in Fig 1(b), −→n1,−→n2 are the surface normal at P
on the two manifolds. The shaded area is the positive linear
span of −→n1,−→n2. As −−→er is lies in the positive linear span, this
point P is a stuck point.

Fig 1(c) shows the case that the robot will slide on the
surface. In this case, we have −1 < 〈−→n ,−→er 〉 < 0. Thus the
robot is going to slide along the magenta vector

−−→
proj, where−−→

proj = −→er − 〈−→er ,−→n 〉−→n .
In order to plan a trajectory τ1, τ2, ..., τn that has high

probability to be successfully executed by the given controller
under actuation uncertainty, we want to estimate the proba-
bility of success for each pair of adjacent waypoints τi, τi+1.
As τi, τi+1 are generated from motion planning algorithms
such as RRT, there is a collision free path p between the two
waypoints. To succeed in moving the robot from τi to τi+1

means that the robot will reach to the ε-ball around τi+1 within
a certain time limit and the resulting path between τi and τi+1

should be in the region of interest around p. We would like
to estimate the probability that the robot successfully reaches
the ε-ball around τi+1.

Fig. 2. Process to extract features from the environment. (a) Set a region
of interest. The red box is the robot. The light blue boxes are the random
obstacles in the environment. The dark blue boxes is the boundary of the
region of interest. (b) Generate potential contact points on the obstacles and
label them as “good” (green) or “bad” (red) points. If the robot contacts the
obstacles at these “good” points, it is likely to continue toward the goal. (c)
Generate feature vector from the environment using these potential contact
points. The black arrows represent the parallel rays. (d) The orange arrows
represent the “lidar” rays.

One can run many simulations to estimate the probability
of success for moving between waypoints. However, this will
require a lot of simulation time and would be prohibitive for
use within a planner. Instead of running simulations, we try
to use a learning method to predict the probability of success
given a robot, two waypoints, and the environment.

IV. APPROACH

In this preliminary work, we consider the task of moving an
SE(2) robot from a fixed start to a fixed goal. The obstacles
in the environment are randomly generated rectangles and we
assume that the straight line in C-space between start and
goal is collision free (as would be output by a planner). The
key question to answer for learning to predict the success
rate is how do we represent the important features of the
environment? We propose several features to represent the
environment and compare the performance of these features
using Logistic Regression and Support Vector Regression. We
will discuss how we design the features in this section.

As shown in Fig 2, the feature extraction process can be
separated into two steps. The first step is trying to sample
potential contact points around each obstacle in the workspace
and label the contact points as good or bad points. The bad
points are either stuck points or points from which the object
is likely to be moved to a stuck point. The good points are all
other surface points. The second step is to build a feature
vector from the environment using these potential contact
points.

A. Labeling potential contact points

As described in Section III, we can find the stuck point in
the C-space and use these information to build feature vectors.
However, it is hard and expensive to sample contact points
on the surface of C-space obstacles. In stead of labeling the
contact points in C-space, we try to label the potential contact
points in the workspace.

We first interpolate a set of points on each edge of the
obstacles with a fixed step size. These points can be treated
as the potential contact points on the obstacles. Then we need
to label these potential contact points as good or bad points
as shown in Fig 2(b). The bad points are the points that are
detected as stuck points described in Section III and the points
will slide to the stuck points. Other points are the good points.



Fig. 3. Examples of “good”(green) and “bad”(red) points. Blue arrow −→n :
surface normal. Yellow arrow −→er : normalized pose error. Magenta arrow

−−→
proj:

normalized pose error projected onto the surface.

The basic assumption is if the robot has multiple contact
points with the obstacles, if one of them is bad point, then
the robot gets stuck. If all contact points are good points, then
the current pose of the robot is likely to be a good point in
C-space. However the second part of the assumption is not
always be true, but we can still use this assumption in order
to save computation time (we would have to check many sets
of contacts otherwise).

In the workspace, labeling the potential contact points has
two steps: 1) Find stuck points; 2) Find the points from which
the object is likely to slide to a stuck point.

Fig 3 shows the example of labeling potential contact points
in 2D space. Fig 3(a) shows an example where −→er points into
an obstacle, where 〈−→n ,−→er 〉 < 0. In this case, the point P
will slide on the surface following the magenta vector

−−→
proj.

Fig 3(b) shows the case that −→er points out of the obstacle,
where 〈−→n ,−→er 〉 > 0. Fig 3(c) and (d) are the case of stuck
points. In the first step, we will find these stuck points.

Note that in Fig 3(c) and (d), point P1 and P2 are locally
good points as they are similar to the example in Fig 3(a).
However, if the object made contact at P1 or P2 and slid
toward the goal, it would arrive at the stuck point P . Thus,
P1 and P2 should also be labeled as bad points. In the second
step, we will find these kind of points.

As we first discretize each edge of the rectangle obstacles,
we can not directly use the stuck point condition to check
whether each point is a stuck point or not because it’s un-
likely we will generate a point whose surface normal directly
opposes the error vector. Algorithm 1 shows the process to
find the bad points along one edge of the obstacle in SE(2).
From line 6 to line 16, we find the stuck points defined above.
Lines 8-11 checks if the

−−→
proj vectors of the adjacent points are

pointing to each other. This is an approximate way to find the
stuck point such that 〈−→n ,−→er 〉 = −1. Lines 12-14 check if the
point is a stuck point at the intersection of two surfaces. Lines
17 explore other points that are sliding to the stuck points
found before. For each bad point, we also label the points
from which sliding the object toward the goal will result in
being stuck as “bad”.

B. Build feature vector from labeled potential contact points

After labeling potential contact points as discussed above,
we can get a map like Fig 2(b). In order to extract a feature
vector from this map, we propose several variants of ray-
shooting.

We first set up a set of rays in either workspace or C-space.
We tried two different distribution of rays. The first one is
shooting the rays from the origin similar to a lidar sensor as

Algorithm 1: Find Bad Points On One Edge
Input:

ps: an ordered array of points on the given edge.
p ∈ ps: an element stored in the array.
p.pos: the position of this point in the world frame.
p.norm: the surface normal at this point.
p.isGood: indicate the point is a good point or not.
target: target pose of the robot.
δ: small step size.

Initialize:
1 for p in ps do
2 p.isGood ← True
3 er ← (target− p.pos)/ ‖target− p.pos‖
4 p.proj ← er − 〈p.norm, er〉 p.norm
5 end

Find Stuck Point:
6 for p in ps do
7 if 〈p.norm, er〉 < 0 then
8 if 〈p.proj, p.next.pos− p.pos〉 > 0 and

〈p.proj, p.next.proj〉 < 0 then
9 p.isGood ← False

10 p.next.isGood ← False
11 end
12 if CheckCollision(Ray(p.pos, δp.proj/ ‖p.proj‖)) then
13 p.isGood ← False
14 end
15 end
16 end

Explore Bad Point:
17 For each “bad” point, check its neighbor points. If the neighbor

point’s
−−→
proj points to this “bad” point, label the neighbor

point as “bad”. Loop until all “bad” points have been checked.

the orange arrows indicate in Fig 2(d). The second approach
is to use a set of parallel rays as shown in Fig 2(c).

For each ray, there is an expected length of the ray. Suppose
there is no obstacles but only the dark blue boxes shown in
Fig 2(a) which is the bounding box of the region of interest.
The ray will hit the bounding box and stop. The length of
this line segment is the expected length of the ray when
the environment is clear. When given an environment with
obstacles we will shoot the ray until it either hits a bad point
or it hits the bounding box. The length of this line segment is
called measured length of the ray. For each ray, we have two
types of features: binary and continuous. If the ray is labeled
as a bad ray (hitting a bad point), then the binary feature will
label it as 0 and the continuous feature will label it as the ratio
between the true length and the expected length. Note that if
the ray hits a good point, it will keep going forward.

We also evaluate whether to use the rays in workspace
or C-space. In the C-space, we move the robot along the
C-space ray and when robot contacts an obstacle, if all the
workspace contact points are good points, we treat this C-
space contact point as a good point, otherwise it is a bad point.
Thus, by combining these different choices of parallel/lidar, bi-
nary/continuous rays, C-space/workspace, we have 8 types of
features: Parallel Binary C-space, Parallel Continuous C-space,
Parallel Binary Workspace, Parallel Continuous Workspace,
Lidar Binary C-space, Lidar Continuous C-space, Lidar Binary



Workspace, Lidar Continuous Workspace. Each combination
produces a feature vector of size N , where each element is
either binary or in [0, 1].

C. Collecting Ground-Truth Data

In order to learn the probability of success for each environ-
ment, we need to collect a dataset of different environments
and ground truth labels of probability of success. We first
randomly generate a set of different environments. For each
environment, the feature vector proposed in the previous
section can be treated as the data point for the learning
algorithm. The ground truth label is generated by simulation
results. For each environment, we run simulation in Gazebo
for 20 times and compute the success rate during this 20 trials.
This success rate is treated as the ground truth label. We test
three different regression algorithm: Logistic Regression(LR),
Support Vector Machine Regression with RBF kernel and
Support Vector Machine Regression with linear kernel.

V. EXPERIMENT

A. Data Collection

In this preliminary work, we set up a simple experiment for
an SE(2) robot as shown in Fig 2(a). The red box represents
the robot which is a 0.3m × 0.3m square robot. The region
of interest is bounded by the dark blue boxes. The size of the
region is 2m×3m. The start pose of the robot is at the origin
in the world frame and the target pose is (0, 3, 0). The light
blue boxes are randomly sampled obstacles such that there
is a collision-free path between the start and target for the
robot. In this experiment, we sample two rectangles on each
side of the space. In order to manually introduce some difficult
cases; we rotate the obstacles until one of their corners is close
to the boundary of the robot path. We sampled 800 normal
environments and 800 difficult cases. For each environment,
we run simulations in Gazebo 20 times to control the robot
moving from the start to the target. For each run, we set a
120s simulation time limit. The controller terminates if the
distance between the robot and the target is smaller than ε =
0.1m. We use the noise model described in Section III, û =
u +max(ω1, ω2|u|)v, where v is generated from a truncated
normal distribution. In the experiment, we use ω1 = 0.02 and
ω2 = 1.0. The bound of the truncated normal distribution is
[−1, 1] and µ = 0, σ2 = 0.5.

We use a contact motion controller as in [9]. The noise
added to the actuator of the robot is discussed in Section III.
A run is successful if the resulting trajectory ends in the target
region and this trajectory is inside the region of interest.

B. Results

To compare the different types of features we proposed,
we tested three benchmark regression algorithms: Logistic
Regression (LR), Support Vector Regression with RBF kernel
(SVR with RBF), Support Vector Regression with Linear ker-
nel (SVR with Linear). For each algorithm and each feature,
we run a 10-fold cross validation to test the performance of the
algorithm on this type of feature. We use the mean absolute

value of errors to evaluate the performance. This measurement
computes the mean absolute value of the errors between the
predicted success probability and the ground truth success
probability.

Table I shows the results. For the 4 Lidar versions of
the feature, we use the same resolution of the rays. For
the workspace feature, we have 37 rays. For the C-space
feature, we have 37 × 6 = 222 rays, where we add 6
different orientation directions to the workspace feature. For
the 4 parallel versions of the feature, we also use the same
resolution of the rays. For the workspace feature, we have
31 rays. However, for the C-space feature, we have 31 × 6
rays, where we also add 6 different orientation directions to
the workspace feature. There is no significant performance
difference between the different features.

TABLE I
MEAN ABSOLUTE VALUE OF ERRORS AND FEATURE COMPUTATION TIME

LR(%) SVR with RBF (%) SVR with Linear(%) Time(s)
Parallel Binary C-space 12.5± 1.0 13.6± 0.9 12.1± 0.8 2.31
Parallel Continuous C-space 12.7± 0.9 13.5± 0.8 12.3± 0.7 2.31
Parallel Binary Workspace 13.3± 0.8 12.9± 0.8 13.1± 1.0 0.42
Parallel Continuous Workspace 13.5± 0.6 12.5± 0.9 13.2± 0.8 0.42
Lidar Binary C-space 13.1± 1.0 13.7± 0.9 12.1± 0.9 1.72
Lidar Continuous C-space 13.1± 0.9 12.9± 0.8 12.0± 0.9 1.72
Lidar Binary Workspace 13.8± 0.9 13.9± 1.1 13.2± 0.8 0.32
Lidar Continuous Workspace 13.4± 1.0 12.4± 0.9 13.5± 1.0 0.32
Random 37.83± 2.43

During the data collection process, we run simulation 20
times to estimate the success rate for a single environment.
The average computation time to estimate the success rate of
a given environment using simulation method is 604.4s. The
last column in Table I shows the computation time of feature
extraction a single environment. The computation time is much
smaller than the simulation method.

While there is no significant difference in performance
between our feature representations, the results are clearly
better than randomly assigning a success rate (37.83±2.43%).
The small variances also suggest that our methods are not
very sensitive to changes in the environment geometry, so the
predictions will likely be similar for similar environments, as
would be expected.

VI. CONCLUSION

In this paper, we proposed a contact-point-based feature
extraction method to generate useful features for determining
controller success probability. We tested Logistic Regression,
Support Vector Machine Regression with RBF and linear
kernels to learn the success rate of the controller for an
SE(2) robot in a contact-rich environment. The preliminary
experiment shows that our features can be used to learn the
success rate of the controller better than random prediction
and can be done much faster than simulation. In future work,
we will try to extend the method to SE(3) robots.
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