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Despite many benefts of automated driving, such as reduc-
ing fuel consumption, traffc congestion and crashes, a lack 
of trust hinders the adoption of automated vehicles (AVs). 
Prior research focused on people’s trust in AVs based on 
AVs’ overall performance. The present study is focused on 
people’s trust change in AVs over time in a sequential de-
cision making context. We conducted a human-in-the-loop 
experiment with 16 participants in a virtual 3D environment 
wherein participants acted as passengers riding an AV. We 
manipulated two independent variables: level of stochas-
ticity (high vs. low) and source of stochasticity (external 
vs. internal). Dependent variables included participants’ 
moment-to-moment trust in AVs and post-experiment trust. 
Our results revealed that when the stochasticity was due to 
internal errors (e.g. AV’s sensor errors) as compared to ex-
ternal errors (e.g. traffc jams or road blocks), participants’ 
trust in AVs decreased more signifcantly. Also, the larger 
the cost due to an error, the larger the trust decrement. 
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CCS Concepts 
•Human-centered computing → HCI theory, concepts 
and models; 

Introduction 
Despite the many benefts of automated driving, such as re-
ducing fuel consumption, traffc congestion and crashes, a 
lack of trust hinders the deployment of automated vehicles 
(AVs) on the road. Therefore, research efforts have now 
been undertaken to promote trust in and acceptance of AVs 
[3, 10, 11, 14]. 

For example, Waytz et al. [12] showed that anthropomor-
phism of the AV signifcantly affects the drivers’ trust in AVs. 
Koo et al. [8] found that when AV explained what it was go-
ing to do before its action, it decreased the participants’ 
anxiety and increased their preference for the AV. Forster et 
al. [5] showed that the explaining the AV’s next action with 
voice was rated as superior on AV trust, anthropomorphism 
and usability compared to the interface without explanation. 
More recently, Haspiel et al. [6] and Du et al. [3] showed 
that the AV passengers had higher trust in the AV when it 
provided explanations before an unexpected event than af-
ter an unexpected event happened. 

Existing studies shed light on the factors infuencing drivers’ 
and passengers’ trust in and acceptance of AVs. However, 
they primarily examined trust once at the end of an experi-
ment, with little emphasis on the form and evolution of trust 
over time [2, 13]. To address this limitation, we aim to ex-
amine people’s trust dynamics when interacting with an AV. 
Specifcally, how do the level of stochasticity and source of 
stochasticity affect people’s trust dynamics in AVs? 

An AV plans its actions based on all available information, 
such as time to destination and fuel economy. Suppose 
an AV plans its optimal policy for moving from point A to 

point B (i.e., the set of optimal actions the AV should take 
at each intersection to move from point A to point B). Most 
of the time, the AV will be able to reach its intended location 
at each intersection. However, occasionally due to some 
unexpected stochastic events, such as traffc jams, road 
blocks or sensor errors, the AV will not reach the intended 
location. In this study, we used Markov Decision Process 
to model this sequential decision making problem. Of in-
terest in this study are the level of stochasticity - the extent 
to which an AV is able to reach its intended location by fol-
lowing its optimal policy, and the source of stochasticity -
whether the unexpected stochastic event is due to external 
factors which are diffcult to anticipate in advance (e.g. traf-
fc jams or road blocks), or due to internal factors attributed 
to the AV (e.g. AV’s sensor errors). In addition, we exam-
ined how the consequence of an stochastic event would 
infuence people’s trust in AVs. 

We hypothesized that level of stochasticity, source of stochas-
ticity and outcome of the AV’s decision affect human drivers’ 
trust in AVs and tested the following hypotheses: 

• H1: Higher stochasticity would lower human users’ 
trust toward AVs. 

• H2: The stochasticity resulting from internal factors 
would lead to greater trust decrement than that from 
external factors. 

• H3: The higher the cost resulted from the unexpected 
event, the greater the trust decreases. 

Method 
Participants 
16 participants (Age: Mean = 25.44 years, SD = 2.56 years) 
took part in the experiment. Among the 16 participants, 6 
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Figure 1: Map of the city. Red dots: Origin and destination pairs, 
O1, D1, O2, D2. Magenta arrow: AV’s current location and 
orientation. Black solid line: path has already passed. Green solid 
line: planned optimal path to the destination. Dotted light green 
line: previous planned optimal path to the destination before error 
occurs. 

were female and 10 were male. 15 out of the 16 partici-
pants had valid driving licenses in or outside of U.S. Partic-
ipants were compensated with $20 upon completion of the 
experiment. 

Apparatus and task 
We developed a 3D simulation environment as shown in 
Figure 2. In this environment, each participant acted as a 
passenger of an AV. The AV drove in the city from the origin 
to the destination (i.e. from O1 to D1 and from O2 to D2 as 
shown in Figure 1). The naviagation problem was modeled 
as a Markov Decision Process (MDP) and the optimal pol-
icy was computed via policy iteration. The MDP provides a 
mathematical framework for modeling sequential decision 
making where the outcomes are stochastic. We considered 

Figure 2: The 3D Environment with Graphics User Interface 
(GUI). A: Bottom of the screen shows the optimal direction at each 
intersection. B: Center of screen shows the explanations of 
different unexpected events. C: Top right of the screen shows the 
slider used by participants to report their trust. D: Bottom right of 
the screen shows the mini-map. 

two sources of stochasticity in the simulation environment: 
external factors such as traffc jams and road blocks, and 
internal factors such as AV’s sensor errors. 

Design of the Graphical User Interface (GUI) 
Figure 2 shows the GUI. At the bottom of the screen, the 
GUI indicates the optimal direction that the AV initially plans 
at an intersection. Due to the inherent stochasticity (i.e. 
traffc jams, road blocks, AV’s sensor errors), the AV may 
not be able to reach the intended direction. When an un-
expected event happens, an explanation in both auditory 
and visual modalities (in the center of the screen) will be 
provided to the participants as show in Figure 3. 

The top right corner indicates the participants’ moment-to-
moment trust. After passing an intersection, participants 
were asked to report their trust in AVs via the slider. 
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(a) 

(b) 

(c) 

Figure 3: External factors: 
(a)traffc jam, (b)road block. 
Internal factors: (c)sensor error. 

The mini-map at the bottom right corner shows the city 
map. The mini-map tracks the AV’s location in real time and 
shows the planned path from the AV as shown in Figure 1. 
The magenta arrow indicates the current location and orien-
tation of the vehicle. The solid black line indicates the path 
that the vehicle has already passed. The solid green line 
indicates the planned optimal path to the destination. The 
dotted green line indicates the previous planned optimal 
path to the destination before the unexpected event occurs. 

Experimental design 
The experiment used a 2x2 within-subjects design with two 
independent variables - level of stochasticity (high vs. low) 
and source of stochasticity (internal vs. external). We se-
lected two pairs of origins and destinations (i.e., O1, D1, 
O2, D2 as shown in Figure 1). Combining the two different 
levels of stochasticity and two pairs of origins and desti-
nations, each participant experienced four rides. The pre-
sentation of the four rides followed a 4 × 4 Latin square to 
eliminate potential order effects. 

Independent variables: There were two levels of stochas-
ticity (high vs. low). The level of stochasticity was the prob-
ability that the AV cannot achieve the optimal direction at 
each intersection (high: 40% vs. low: 15%). Furthermore, 
there were two sources of stochasticity. One was external 
factors which were from the environment and hence were 
diffcult to anticipate (e.g. road blocks and traffc jams) and 
the other was internal factors attributed to the AV (e.g., sen-
sor errors). Within each ride, internal (sensor errors) and 
external stochastic (traffc jams and road blocks) events 
were generated randomly with equal probability. The proba-
bility of traffc jam and road block were also the same. 

Dependent variables: Dependent measures in this exper-
iment included participants’ subjective trust and the length 
of the planned optimal path. We measured participants’ 

subjective trust in AVs using two methods: participants in-
dicated their moment-to-moment trust after each intersec-
tion, and rated their post-experiment trust in the AV after 
each ride using Moray’s trust survey [9]. We measured the 
change of optimal path length when an stochastic event 
happened (e.g., At an intersection, the AV may fail to fol-
low the optimal path it initially planned due to sensor errors. 
And this re-routing will likely affect the the AV’s subsequent 
path and the length of the path.) 

Procedure 
Upon arrival, participants signed an informed consent and 
flled in a demographic survey. After that participants re-
ceived a training on the simulator and the map of the city. 
During the map viewing session, participants were pre-
sented with the map of the city and the length of each road 
on the map. Participants were then presented with 28 pairs 
of paths. Each pair had the same origin and destination, but 
different routes (magenta and blue path in Figure 4). The 
length of each route was given on the top of the fgure. The 
participants were required to review the map and the 28 
pairs of paths for at least 10 minutes. 

Results 
We conducted linear mixed effects analysis with each par-
ticipant as a random intercept. Results are reported as sig-
nifcant for α < .05. 

Level of Stochasticity 
The results indicated that stochasticity level signifcantly 
affects participants’ post-trial trust and moment-to-moment 
trust in AVs. Higher stochasticity level leads to lower post-
trial trust in AVs (F (1, 15) = 15.568, p = .001). Similarly, 
higher stochasticity leads to lower moment-to-moment trust 
report (F (1, 1377.401) = 285.626, p < .001) as shown in 
Figure 5. 
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Trust change 

Unexpected −6.37 ± 0.78 
Expected 3.31 ± 0.34 

External −0.91 ± 0.68 
Internal −11.35 ± 1.28 

  

   

    

  

 

    

  

  

   

      

      

   
Table  1:  Mean and standard error 
(SE) of participants’ 
moment-to-moment trust change 

Figure 4: Training map. Magenta and blue path indicated two 
routes from the same origin and destination. Length of each route 
is listed on top of the image. 

Source of Stochasticity 
The results indicated that the occurrence of stochastic 
events had a signifcant impact on participants’ moment-to-
moment trust changes (F (1, 1391) = 177.813, p < .001). 
When the AV successfully followed the intended optimal 
direction, participants’ trust increased by 3.31 ± 0.34. How-
ever, when stochastic events happened (i.e. AV failed to 
reach the intended optimal direction due to traffc jams, 
road blocks or sensor errors), participants’ moment-to-
moment trust decreased by 6.37±0.78 as shown in Table 1. 

The results also indicated that the source of stochasticity 
(external factors vs. internal factors) signifcantly affects 
the participants’ trust changes (F (1, 423.383) = 58.229, 
p < .001). If the source of stochasticity was due to external 

Figure 5: Mean and standard error (SE) of post-trial trust and 
moment-to-moment trust 

factors (i.e. traffc jams, road blocks), participants’ moment-
to-moment trust decreased by −0.91 ± 0.68. However, if 
the source of stochasticity was due to internal factors (i.e. 
sensor errors), participants’ moment-to-moment trust de-
creased by −11.35 ± 1.28 as shown in Table 1. 

Change of the Optimal Path Length 
The results indicated that when unexpected stochastic 
events occurred, the change of the optimal path length sig-
nifcantly affected participants’ moment-to-moment trust 
change (F (1, 426.097) = 4.012, p = .046) as shown in Fig-
ure 6. The larger the increment of path length (i.e., longer 
distance), the larger the trust decrement. 

Discussion & conclusion 
Consistent with our previous fnding [7], results from the 
present study indicates that higher stochasticity leads to 
lower post-trial trust in AVs. In addition, we analyzed the 
trust value and trust change value. Our results also indi-
cated that level of stochasticity signifcantly infuence the 
participants’ moment-to-moment trust, which supported our 
hypothesis H1. 
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Figure 6: Trust change vs. change of the optimal path length 

Our results also supported H2, that stochasticity resulted 
from internal factors leads to greater trust decrement than 
that from external factors. [4] built a belief-based trust com-
putation model while distinguishing external and internal 
factors, however, they did not study how external and inter-
nal factors infuenced human’s trust and assigned the same 
weights on both factors. In the present study, we found a 
signifcant difference between external and internal factors. 

H3 was also supported by the results. When stochastic 
events occurred, the larger the negative consequence was, 
the larger the trust decrement. This fnding suggests that 
people display outcome biases when assessing their trust 
in AVs. Outcome bias is one type of decision-making bi-
ases, that people tend to evaluate the quality of a decision 
based on the outcome of the decision. When outcome bias 
occurs, the same decision will be evaluated as worse when 
it happens to produce bad outcome rather than good out-
come, even if the outcome is determined by chance. Previ-

ous research has been studied this phenomena in different 
contexts, such as medical decisions, monetary gambles [1]. 

Our fndings have implications on the design of AVs. Our 
results showed that people’s moment-to-moment trust 
decrement was signifcantly smaller when an unexpected 
stochastic event was due to external factors. This suggests 
that framing the source of errors as external may prevent 
drastic loss of trust. For example, sensor errors could be 
due to harsh weather, which may be perceived as external 
instead of internal errors. It could also be useful to educate 
AV riders on the various factors (e.g., traffc jam, road block) 
that are diffcult to anticipate and predict, which may lower 
the riders’ expectations of AVs and preserve riders’ trust 
even when unexpected events occur. 

There are several limitations of this study. First, the MDP 
based navigation algorithm assumes that the AV can ob-
serve the states accurately. This assumption is often vio-
lated in the real life. Therefore, we aim to explore Partially 
Observable MDP in future works. Second, in this study, the 
explanations of unexpected events (i.e. traffc jams, road 
blocks, sensor errors) as shown in Figure 3 were treated 
given by the 3D simulator instead of a display of the AV. In 
reality, those information should be provided by the AV and 
may not be correct, i.e. the AV reports traffc jam but there 
is no traffc jam. In the future work, we will address this is-
sue by claiming that the explanations are given by the AV 
and add uncertainties to these explanations. 
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