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Abstract— Haptic shared control of an autonomy-enabled
vehicle is used to manage the control authority allocation
between a human and autonomy smoothly. Existing haptic
shared control schemes, however, do not take the workload
condition of human into account. To fill this research gap, this
study develops a novel haptic shared control scheme that adapts
to a human operator’s workload in a semi-autonomous driving
scenario. Human-in-the-loop experiments with 8 participants
are reported to evaluate the new scheme. In the experiment, a
human operator and an autonomous navigation module shared
the steering control of a simulated teleoperated vehicle in a
path tracking task while the speed of the vehicle is controlled
by autonomy. High and low screen refresh rates were used to
create moderate and high workload cases, respectively. Results
indicate that adaptive haptic control leads to less driver control
effort without sacrificing the path tracking performance when
compared with the non-adaptive case.

I. INTRODUCTION

Haptic shared control of a vehicle is a semi-autonomous
driving mode that enables smooth transitions of control
authority and allows the human to negotiate with autonomy
[1]–[5]. In this driving mode, both the human and autonomy
express their intention through the torques they apply on
the steering wheel, the angle of which has a one-to-one
correspondence to the angle of the tires. This scheme enables
negotiation between the two agents; the human can feel the
autonomy’s intention through the torque autonomy applies to
the steering wheel and fully or partially yield to or override
autonomy by reducing or increasing his/her impedance.

In haptic shared control, the impedance of autonomy is
also critical for the negotiation and considered as a design pa-
rameter. Some research efforts focus on the fixed impedance
scheme [1], [4], [5], while others explore modifying the
impedance of autonomy based on some design principles
[2], [3]. Majority of the latter group considers an adaptive
law based on the vehicle-performance-based metrics such
as deviation from the path [2]. However, human factors
related metrics are also important to consider for successful
transitions of control authority. An example such metric
considered in the literature is attention on the road [3].

Workload is another important human factor related to
human performance [6]. In general, workload of the human
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Fig. 1: Block diagram for haptic shared control. δa represents the steering
angle command from autonomy, τh and τa represent the torque from human
and autonomy, respectively. τc and δc are the resultant torque and actual
control steering angle. β is the assistance level, which is always 1 in the
baseline non-adaptive scheme, whereas it varies in the proposed adaptive
scheme.

operator varies as the driving conditions change [7]. These
variations in workload have a direct impact on the proper
management of control authority, as the human operator may
or may not perform as expected based on their current work-
load [8]. However, workload has not yet been considered as
a factor in the adaptation of the impedance of autonomy in
haptic shared control of vehicles.

In this paper, we aim to address this gap by designing
and testing a workload-adaptive framework for haptic shared
control of a vehicle. The adaptive scheme considers the
workload of the human operator as well as their steering
torque, which is interpreted as an expression of intention
for intervention. We then examine the performance of the
proposed adaptive scheme compared with the traditional
non-adaptive one through a human-in-the-loop experiment,
in which the human operator’s workload is regulated by
controlling the screen refresh rate.

The rest of the paper is organized as follows. Sec. II
describes the design of the haptic shared control schemes.
Sec. III describes the algorithm for autonomy used in this
work. The design of the human-in-the-loop experiment is
given in Sec. IV. Sec. V presents the results and discussion.
The paper concludes with Sec. VI.

II. HAPTIC SHARED CONTROL FRAMEWORK

The block diagram for haptic shared control used in this
work is shown in Fig. 1. This scheme is implemented in a
human-in-the-loop simulation setting.

The torque τa reflects the autonomy’s intention and is
applied through a torque feedback feature on the steering
wheel. This torque is generated through a proportional-
integral-derivative (PID) controller that tracks the reference
steering angle generated by the autonomy module using
the nonlinear model predictive control (NMPC) formulation
described in Sec. III. This formulation aims to track a given
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path, and generates also the speed commands in addition to
the reference steering angle. The PID is tuned such that the
vehicle can track the perceived path even without any human
intervention. It is, however, unable to perceive and avoid any
obstacles on the path.

The real path is denoted with white dashed lines on
the road called the centerline. Perceived path from the
autonomy’s point of view may be different from the real one
when perception challenges exists. The simulation testbed
has the capability to emulate such a scenario by introducing
a bias between the perceived and real path.

Through this haptic shared control design, the human
operator can feel the torque from autonomy and negotiate
with it, leading to a smooth control authority transfer. The
human torque is denoted with τh.

The resultant torque τc combining both the one from
autonomy τa and the one from human operator τh determines
the final control input to the vehicle, namely, the steering
angle δc.

Two haptic shared control schemes are considered: the
proposed adaptive one, and a non-adaptive one as the base-
line. They are described further in detail next.

A. Adaptive haptic shared control
The adaptive scheme is designed based on two variables:

workload of and input torque from the human operator.
Workload reflects the condition of the human operator,
whereas the input torque indicates human’s level of dis-
agreement with autonomy. The resultant torque in Fig. 1 is
calculated in this scheme as

τc = τh + β(wt, τ̂h)τa, (1)

where the term β is referred to as the assistance level. It
represents the magnitude of assistance from autonomy, thus
controlling its impedance. τ̂h is the human’s normalized input
torque, which is calculated by dividing the human’s torque
τh by an estimate of the maximum value τh,max the human
operator can apply. In the developed testbed, τh,max is set as
1.7 Nm based on pilot human-subject studies. By modifying
the assistance level β, the impedance can be varied in a
manner adaptive to the workload of and torque exerted by
the human operator in contrast to a fixed impedance in the
non-adaptive scheme, where β is always 1.

The assistance level β is heuristically designed based
on two aspects. The first aspect considers the human’s
performance under different workload conditions. As shown
in Fig. 2a, for a given amount of torque exerted by the
human operator, level of assistance from autonomy varies
with the workload of the human. The curve is designed
according to the principle described in [9]. It indicates that
human operator should receive less support in the moderate
workload region than in the overloaded or underloaded
regions, because a moderate workload is considered optimal
for human performance. In the present study, wt is defined
such that wt = 0 represents the underloaded cases, wt = 50
the moderate workload cases, and wt = 100 the overloaded
cases. When human operator has moderate workload (wt =
50), β is set to be the lowest value among the whole workload
spectrum. In particular, a value is chosen that is close to zero,
but not too small to the extent that the human does not feel
autonomy’s torque and hence intent anymore. Specifically,
β = 0.1 for moderate workload when human operator

exerts the maximum torque. When the human operator is
underloaded (wt = 0) or overloaded (wt = 100), β = 1
to provide full support from autonomy. Sigmoid functions
are used to connect the moderate workload case and the
underloaded and overloaded cases smoothly.

As for the second design aspect, for a given workload
the human operator experiences, larger torque input from
the human indicates a stronger disagreement with autonomy.
Emergency cases may require such strong interventions.
Hence, the assistance level is reduced with a goal to make it
easier for the human to control the vehicle as he/she applies
more torque as shown in Fig 2b. However, the level of
reduction in the assistance level depends on the human’s
workload. Since a moderate workload level is considered
optimal in the literature [9], when the human operator has
moderate workload, his/her command is considered to be
more reliable compared with the overloaded or underloaded
cases. Therefore, the assistance level β is reduced more when
wt = 50 than the cases when wt = 0 or wt = 100. For
all these cases, β starts from 1 to navigate the vehicle in
autonomous mode when the human operator has no input
torque. This assistance level is maintained until reaching
a threshold to filter out small unintended torques. In the
cases when human operator experiences moderate workload
and completely yields to autonomy, this threshold is set to
around 0.04 Nm and the corresponding normalized torque
is calculated to be 0.02. This threshold is determined based
on pilot human-subject studies. Similarly, the threshold for
under and overloaded cases (wt = 0 or wt = 100) is picked
as 0.3. A quadratic function, which is symmetric about
wt = 50, is used to connect these values in three different
cases to model the threshold for different workload values
wt. Thus, for a given workload, the threshold and assistance
level are calculated when human exerts the maximum torque
(τ̂h = 1). The smooth transitions along the dimension of
normalized human torque is achieved through a sigmoid
function.

Combining these two aspects, the assistance level β is
calculated as

β(wt, τ̂h) =1−
[
1− (

0.9e0.3(|wt−50|−25)

e0.3(|wt−50|−25) + 1
+ 0.1)

]
[

e

60τ̂h−18.6−8.4(
wt
50

−1)2

2.9−1.4(
wt
50

−1)2

e

60τ̂h−18.6−8.4(
wt
50

−1)2

2.9−1.4(
wt
50

−1)2 + 1

]
.

(2)

and the corresponding 3D plot showing the relationship
between the assistance level β, the workload wt and the
normalized human torque τ̂h is shown in Fig. 3.

B. Baseline non-adaptive haptic shared control
For the baseline non-adaptive scheme, the torque from the

autonomy is directly blended with the torque from the human
operator. In the control diagram shown in Fig. 1, β = 1 for
all times in this scheme.

III. DESIGN OF AUTONOMY IN SHARED CONTROL

A nonlinear model predictive control (NMPC) based navi-
gation algorithm is used as the autonomy in this study. It pro-
vides references for the steering angle and speed commands.
The NMPC formulation is adopted from [10] and [11] with
modifications. In particular, a new cost function is designed
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(a) Example relationship between
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Fig. 2: Illustration of design principles of assistance level

Fig. 3: Relationship between base assistance level β, workload wt, and
normalized human input torque τ̂h

to fit the context of this work, while the vehicle models and
most of the constraints for states and controls are the same
as in the literature [10], [11], the only difference being that
obstacle avoidance constraints are not employed in this work.
Hence, autonomy is only capable of tracking a given path.
The cost function is modified, because the path tracking task
in this work differs from the task of navigating unstructured
environments considered in [10], [11]. Specifically, the cost
function in this study is

J = w1Tp + w2

∫ tP

t0

(
yref(x(t))− y(t)

)2
dt

+ w3

∫ tP

t0

(wγγ
2 + wJxJ

2
x)dt

+ w4

∫ tP

t0

tanh
[
− Fz,rl − a

b

]
+ tanh

[
− Fz,rr − a

b

]
dt.

(3)

It consists of four terms. The first term is used to control the
speed of the vehicle. Tp is the prediction horizon calculated
by traveling a constant distance, which is 100 m in this study.
The second term penalizes the deviation from the current
position of the vehicle y(t) to the given position on the path
yref(x(t)). The third term regulates the control inputs of the
vehicle, namely, the longitudinal jerk Jx and steering rate
γ, for a smooth steering maneuver and acceleration. Two
weights wJx and wγ are set to balance the regularization of
these two control inputs. The fourth term is a soft constraint
that increases the cost when one of the tire vertical loads
Fz,rl, Fz,rr is close to the lowest allowable threshold. This
soft constraint is used to prevent the vehicle from operating
at its dynamic limit unnecessarily [10], [12]. Four weights

w1, w2, w3 and w4 are set to achieve a trade-off between
these goals. The cost function integrates the terms starting
from t0, the moment when autonomy receives a new piece of
information about vehicle, to tp, the moment the prediction
ends. tp is calculated as t0 + Tp.

A constant bias of 0.8 m is added to the real trajectory in
the cases where a perception challenge was emulated. The
bias is selected to be large enough to differ from the unbiased
case clearly, but not too large to render autonomy useless.

To solve the NMPC problem, the open-source nonlin-
ear optimal control package NLOptControl [13] is used,
which adopts the Legendre-Gauss-Radau collocation method
to transfer the continuous optimal control problem into a
nonlinear program. The nonlinear program is then solved by
using the solver package IPOPT [14]. This optimization pro-
cess generates a series of steering angle and speed commands
through the whole control horizon Tp, and only the first 3 s
worth of commands is buffered for use. While executing the
previous control command series, the system formulates and
solves a new optimal control problem with a receded horizon,
and the resulting new command series are applied as soon as
they are available. Hence, the control update time is variable.
In the current study, the maximum update time during the
experiment driving was 0.57 s, while the median update time
was 0.22 s. These update times are sufficient in light of prior
work [10]–[12].

IV. EXPERIMENT DESIGN

A. Experimental Setup
We used a human in the loop experiment to evaluate the

performance of the adaptive control scheme. We developed
our testbed based on the teleoperated vehicle simulation
setup of [15] as shown in Fig. 4. More specifically, the human
operator and the autonomy shared the steering control of
a simulated teleoperated vehicle, namely, a notional High
Mobility Multipurpose Wheeled Vehicle (HMMWV). At the
same time, autonomy controlled the speed of the vehicle.
The autonomy in this experiment was based on the NMPC
approach as described in Sec. III. To regulate the workload,
the human participant was exposed to different screen refresh
rates. We hypothesized that in a high refresh rate case (20
Hz, or a refresh period of 0.05 s per frame), the human
operator experiences a moderate workload level, while in
a low refresh rate case (2.5 Hz, or refresh period of 0.4 s
per frame), the human participant needs to use more mental
resource to interpolate the vehicle’s behavior between two
frames and thus experiences an overloaded case. The validity
of this hypothesis was tested as part of the experiment. The
autonomy would also exhibit different performance levels
introduced through a bias in the perceived path to emulate a
perception challenge for the autonomy.

We investigated the performance for two different haptic
shared control schemes in the human-in-the-loop experiment:
the adaptive haptic shared control and non-adaptive haptic
shared control schemes. The adaptive haptic shared control
scheme adapted to the perceived workload corresponding to
the screen refresh rate the human operator experienced and
the torque input from human operator.

B. Methodology
1) Participants: A total of 8 students participated in the

experiment. These 8 participants were on average 22.9 years



Fig. 4: Shared control simulation platform

TABLE I: Eight Test Conditions

Condition Autonomy Performance Screen Refresh Rate Haptic Shared Control Scheme

1 Unbiased 20 Hz Non-adaptive
2 Unbiased 20 Hz Adaptive
3 Biased 20 Hz Non-adaptive
4 Biased 20 Hz Adaptive
5 Unbiased 2.5 Hz Non-adaptive
6 Unbiased 2.5 Hz Adaptive
7 Biased 2.5 Hz Non-adaptive
8 Biased 2.5 Hz Adaptive

old (SD = 3.6 years) and had an average of 4.1 years of
driving experience (SD = 3.5 years). All participants had
normal or corrected-to-normal vision.

2) Driving Task: In the driving task, a participant and the
autonomy shared the steering control of the vehicle, whereas
the speed of the vehicle was controlled by autonomy. The
goal of the task is to complete a track with minimal deviation
from the path as denoted by the centerline without hitting an
obstacle. The autonomy had no obstacle avoidance capability.
In some cases, to emulate a perception challenge, an offset
was introduced such that the autonomy tracked a path that
deviated from the centerline by 0.8 m, which is referred to
as biased autonomy. To regulate the workload of the subject,
2 screen refresh rates, 20 Hz and 2.5 Hz, were presented.
We consider cases where the screen refresh rate is 20 Hz
as moderate workload and the cases with the screen refresh
rate of 2.5 Hz as high workload. Both non-adaptive shared
control scheme and adaptive shared control scheme were
used in this experiment as described in Sec. II-B and Sec. II-
A, respectively.

3) Experimental Design: The experiment used a within-
subjects design with three independent variables. The first
independent variable was the haptic shared control scheme
(adaptive haptic shared control vs. non-adaptive haptic shared
control). The second independent variable was the screen re-
fresh rate (20 Hz vs. 2.5 Hz). The third independent variable
was the performance of the autonomy (biased vs non-biased).
Each participant experienced 8 tracks in the experiment. On
each track, one combination of haptic shared control scheme,
screen refresh rate and performance of autonomy was used.
The resulting eight test conditions are shown in Table I. The
presentation of test conditions followed a 8× 8 Latin square
design to eliminate potential order effects.

4) Measures: Five dependent variables were collected in
the experiment: participants’ self-reported workload and trust
in the shared control autonomy, participants’ control effort
and driving task performance for path tracking period of the
driving and participant’s control effort during the obstacle
avoidance maneuver. After each track, participants reported

their workload and trust using two uni-dimensional scales
(see Appendix I). The NASA TLX survey [16] and the
Moray’s trust survey [17] were presented to the participants
before the evaluation stage such that they understood the
meaning of workload and trust.

Participants’ control effort was calculated as the average
torque that a participant applied on the steeling wheel. The
measurement was acquired at the frequency of 100 Hz by a
torque sensor. Driving task performance was evaluated by the
path tracking error. The path tracking error is calculated as
the mean of the absolute deviation of the vehicle’s position
from the centerline. The measurement was acquired at the
frequency of 100 Hz.

5) Experimental Procedure: Participants provided a
signed informed consent form and filled in a demographic
survey. During the training session, the participants per-
formed five trials of the driving task in different conditions:
one with 20 Hz refresh rate, non-adaptive scheme with an
unbiased autonomy and four trials with 2.5 Hz refresh rate.
They experienced non-adaptive with an unbiased autonomy,
adaptive with a biased autonomy, adaptive with an unbiased
autonomy and non-adaptive with a biased autonomy. Each
trial took approximately 2.5 min.

During the real experiment, participants performed the
driving task on 8 different tracks with different test cases
as described in Table I. Each trial took approximately 1.5
min. After each trial, the participants were asked to fill a
post survey about the workload and trust during the track
they just drove on. If they hit the obstacle, the trial was
restarted.

V. EXPERIMENTAL RESULTS AND DISCUSSION

Three-way repeated measures Analysis of Variance
(ANOVA) was conducted with the shared control scheme,
autonomy performance and screen refresh rate as the within-
subjects variables. Results are reported as signicant for a sta-
tistical significance level of α = 0.05; i.e., if the probability
p of observing the difference seen in the experimental data
purely due to random effects is less than 5%, the difference
is deemed statistically significant. Table II summarizes the
mean and standard error (SE) values of the participants’ self-
reported workload, self-reported trust, driving task perfor-
mance and their exerted torque during the path tracking stage
and the torque during obstacle avoidance.

1) Participants’ Workload: Both screen refresh rate and
autonomy performance had an impact on the participant’s
self-reported workload as shown in Fig. 5. The effect
of different schemes was not signicant. With the 20 Hz
screen refresh rate, participants reported lower workload
(F (1, 61) = 20.02, p < 0.001). One reason could be that
in the cases when the screen refresh rate was 2.5 Hz, the
human operator needed to use more mental resources to
interpolate between two frames. This result validated the
design of regulating workload in this experiment.

When there was no bias for autonomy, participants re-
ported lower workload (F (1, 61) = 18.03, p < 0.001). This
may result from the fact that the human operator may exert
more steering effort for fighting with autonomy in biased
case compared with non-biased cases. Nevertheless, in the
experimental design, only refresh rate is designed to affect
the workload. The workload increase due to bias was not
considered and thus results may improve if the workload due
to bias is also taken into account in the adaptive scheme.



TABLE II: Mean and Standard Error (SE) of workload, trust, lane keeping error, torque during centerline tracking and torque during obstacle avoidance

Metrics N

Screen Refresh Rate
20 Hz 2.5 Hz

Unbiased Autonomy Biased Autonomy Unbiased Autonomy Biased Autonomy
Adaptive Non-adaptive Adaptive Non-adaptive Adaptive Non-adaptive Adaptive Non-adaptive

Workload 8 4.00± 0.94 2.88± 0.52 7.63± 2.15 9.25± 1.39 8.25± 1.71 9.13± 2.06 11.00± 1.50 15.00± 1.57
Trust 8 5.88± 0.52 6.25± 0.25 4.13± 0.67 4.00± 0.53 5.25± 0.56 4.75± 0.53 3.63± 0.42 3.00± 0.46

Centerline tracking error (m) 8 0.19± 0.019 0.18± 0.022 0.27± 0.036 0.32± 0.036 0.26± 0.039 0.28± 0.026 0.48± 0.029 0.52± 0.047
Torque for centerline tracking stage (Nm) 8 0.19± 0.012 0.18± 0.011 0.45± 0.033 0.99± 0.044 0.17± 0.024 0.23± 0.017 0.44± 0.076 0.79± 0.084

Torque for obstacle avoidance (Nm) 8 0.35± 0.020 0.53± 0.036 0.43± 0.035 0.76± 0.070 0.54± 0.049 0.57± 0.043 0.73± 0.052 1.01± 0.095
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Fig. 5: Mean and standard error (SE) values of self-reported workload with
different conditions
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Fig. 6: Mean and standard error (SE) values of self-reported trust with
different conditions

2) Trust in Automation: Both screen refresh rate and
performance of autonomy have an impact on the participant’s
self-reported trust as shown in Fig. 6. The effect of schemes
on trust was not significant.

On the one hand, participants trusted the shared con-
trol autonomy more when the autonomy was non-biased
(F (1, 61) = 27.13, p < 0.001). Since the performance
degraded when the autonomy had bias, the result supports
prior research that the human operator’s trust in automation
depends on the autonomy’s performance [18], [19].

On the other hand, they also trusted the autonomy more
when the screen refresh rate is 20 Hz (F (1, 61) = 6.56, p =
0.013). This may result from the fact that information on
the environment was abundant in the cases when screen
refresh rate was 20 Hz. Human participants could evaluate
the performance of the autonomy better, generating more
trust towards the autonomy.

3) Driving Task Performance: Results revealed that there
was no significance in the path tracking error between two
shared control schemes as shown in Fig. 7. On the other
hand, the performance was significantly worse when low
refresh rate was presented compared with the high refresh
rate case (F (1, 61) = 38.47, p < 0.001). Moreover, the
performance was also worse when a biased autonomy was
implemented (F (1, 61) = 54.12, p < 0.001). These results
also reveal that the refresh rate as well as bias have a impact
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Fig. 7: Lateral control performance in path tracking stage of the driving
task for the four conditions of 20 Hz vs. 2.5 Hz refresh rate and 0 m vs.
0.8 m bias in the perception of the path.

on the performance, alongside with the workload reported
by human participants.

4) Participants’ Control Effort in Path Tracking: Results
revealed that the adaptive scheme reduces the torque applied
by the human operator compared with non-adaptive case
(F (1, 61) = 47.53, p < 0.001). Specifically, when the au-
tonomy had bias, the human exerted significantly less torque
compared with non-adaptive scheme as shown in Fig. 8. On
the one hand, when the autonomy had a relatively better
performance, the human operator had a higher trust towards
the autonomy, leading to the fact that human operator yielded
to autonomy more. Therefore, there is almost no difference
between two schemes, since in the adaptive scheme, we
set the assistance level to be 1 when the torque is small,
i.e., when human yields to autonomy. On the other hand,
when the autonomy had some bias and human operator
needed to intervene to achieve the task objective, the control
effort is less when the adaptive scheme was utilized. This
observation shows that the adaptive scheme could reduce
the control effort, helping the human operator correct the
biased guidance from the autonomy easier. Moreover, the
human participant also needs to apply significantly higher
torque in biased case than the non-biased case. (F (1, 61) =
202.98, p < 0.001) while the impact from the refresh rate is
not significant.

5) Participants’ Control Effort in Obstacle Avoidance:
Results revealed that the adaptive scheme reduces the torque
applied by the human operator compared with non-adaptive
case (F (1, 61) = 29.08, p < 0.001). Specifically, when
the autonomy had bias, the human exerted significantly less
torque compared with non-adaptive scheme as shown in
Fig. 9. The control effort was less when adaptive scheme
was implemented. Just as the previous section discussed, the
adaptive scheme could reduce the control effort from the
autonomy, thereby making it easier for the human to inter-
vene to avoid the obstacle. Moreover, the human operator
also needs to apply more torque in low refresh rate case
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Fig. 8: Control effort in path tracking stage of the driving task for the four
conditions of 20 Hz vs. 2.5 Hz refresh rate and 0 m vs. 0.8 m bias in the
perception of the path.
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Fig. 9: Control effort in obstacle avoidance stage of the driving task for the
four conditions of 20 Hz vs. 2.5 Hz refresh rate and 0 m vs. 0.8 m bias in
the perception of the path.

(F (1, 61) = 26.08, p < 0.001) than the high refresh rate
case. The torque in biased case is also significantly higher
(F (1, 61) = 36.9, p < 0.001) than the non-biased case.

VI. CONCLUSION

This paper presents an adaptive haptic shared control
scheme that adjusts the assistance level from the autonomy
based on the humans workload. The results indicate that the
adaptive haptic shared control scheme can help the human
operator use less control effort during the interventions with-
out sacrificing the driving task performance as characterized
by the path tracking error.

Some important directions for future work are suggested as
a result of limitations in the current study. First, the workload
increase due to the bias in autonomy is not accounted for in
the design of the assistance level. Taking the effect of bias
into account could improve the performance of the adaptive
scheme. Second, the adaptive scheme is developed based on
a heuristic function as a proof-of-concept. Further research
is needed to develop a stronger basis for the function of
assistance level.

APPENDIX I
SCALES USED TO MEASURE WORKLOAD AND TRUST
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